
AOS PyEZ
Release 0.6.0

Sep 07, 2017

Contents

1 Guide 3

2 API Reference 29

3 Other information 33

4 Indices and Tables 39

i

ii

AOS PyEZ, Release 0.6.0

Release version 0.6. (Changelog)

The aos-pyez library is a Pythonic interface to the Apstra AOS-Server API. The complete AOS-Server API documen-
tation is available directly from the AOS-Server User Interface, as shown:

The aos-pyez library is designed to work with AOS version 1.1. At present, the aos-pyez library exposes some, but not
all functionality provided by the AOS-Server. The aos-pyez library, does however, provide you the means to access
any aspect of the API, as described in the Session.api.requests guide. With the current aos-pyez, you will be able to
use the Design, Resource, and Blueprint Build features. Additional features will be continuously added. If you’d like
to get involved, please post your requests/bugs on the github repo.

Contents 1

AOS PyEZ, Release 0.6.0

2 Contents

CHAPTER 1

Guide

Installation

To get the latest release, run

$ pip install aos-pyez

To get latest development version of aos-pyez, run

$ pip install git+https://github.com/Apstra/aos-pyez.git

Quickstart

This section will guide you through the process of creating a management session with the AOS-Server and performing
a few basic interactions.

Let’s start with creating a session:

>>> from apstra.aosom.session import Session
>>> aos = Session('192.168.59.250', user='admin', passwd='admin')
>>> aos.login()

The first parameter is the AOS-server IP address or hostname. The remaining key/value arguments are documented in
the API reference section. The user and passwd both default to admin if not provided.

The login() method will make the request to authenticate a login and provide back a session token. If for any
reason the login attempt fails, an exception will be raised. See Session.login() for details. You can verify the
login session information by examinging the Session.session.

The value of the aos.session value looks like:

3

AOS PyEZ, Release 0.6.0

>>> aos.session
{'port': 8888,
'server': 'aos-server',
'token': u'eyJhbGci<~snip~>MTUiMP0skQ'}

The Session then allows you to access other API features. These features are generally a collection of similar items.
These features are defined within the Session.ModuleCatalog.

['Blueprints', 'IpPools', 'DesignTemplates', 'ExternalRouters',
'AsnPools', 'RackTypes', 'LogicalDevices', 'Devices', 'LogicalDeviceMaps']

• The Devices feature allows you to access the Device-Manager features; i.e. access inventory management
and information about the devices being managed by AOS.

• The AsnPools, IpPools, and ExternalRouters are resources that you provide to AOS so that they can
be assigned and used to services that you define within AOS - aka “Blueprints”.

• The DesignTemplates, LogicalDevices, LogicalDevicesMaps, and RackTypes are all design
elements. You use these design elements to define your Blueprint services.

• Finally the Blueprints are the network services that you are managing with AOS.

To access any of these, simply use the name as an attribute of the aos Session. By way of example, here is how you
can access the devices under management, and display the Management-IpAddr, Serial-Number, Model as it is known
to AOS, and the OS/version information:

>>> for dev in aos.Devices:
... dev_facts = dev.value['facts']
... print dev_facts['mgmt_ipaddr'], dev_facts['serial_number'], dev_facts['aos_hcl_
→˓model'], dev_facts['os_version']
192.168.60.16 08002737C2C1 Cumulus_VX 3.1.1
192.168.60.19 080027A71AE6 Arista_vEOS 4.16.6M
192.168.60.18 0800277025C8 Cumulus_VX 3.1.1
192.168.60.17 080027AC6320 Cumulus_VX 3.1.1
192.168.60.15 08002763CBDC Cumulus_VX 3.1.1

Client Session

This guide explains how you can make a connection to the AOS-server and using the elements of the Session.

Creating a Session

The first step is creating a client Session to the AOS-Server:

>>> from apstra.aosom.session import Session
>>> aos = Session('192.168.59.250', user='admin', passwd='admin)
>>> aos.login()

The first parameter is the AOS-server IP address or hostname. The remaining key/value arguments are documented in
the API reference section. The user and passwd both default to admin if not provided.

The login() method will make the request to authenticate a login and provide back a session token. If for any
reason the login attempt fails, an exception will be raised. See session.Session.login() for details. You can
verify the login session information by examining the Session.session.

4 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

The value of the aos.session value looks like:

>>> aos.session
{'port': 8888,
'server': 'aos-server',
'token': u'eyJhbGci<~snip~>MTUiMP0skQ'}

Making use of a Session

The general use of the Session an interface to the exposed API features, such as the Device-Manager, using resources,
design elements, and managing network services. You can see a list of the existing API features exposed via the
aos-pyez library by examining the Session.ModuleCatalog data:

['Blueprints', 'IpPools', 'DesignTemplates', 'ExternalRouters',
'AsnPools', 'RackTypes', 'LogicalDevices', 'Devices', 'LogicalDeviceMaps']

To access any of these features, you simple use the name of the module as an attribute of the Session. For example, to
show a list of IP Pool names managed by AOS, you would do the following:

>>> aos.IpPools.names
[u'Switches-IpAddrs', u'Servers-IpAddrs']

The modules are generally managed as a collection.Collection and you can manage an item within a col-
lection as a collection.CollectionItem. The use of Collections and CollectionItems will be covered on
separate guide pages.

Resuming an Existing Session

In some cases, you may want to pass around the session information between programs. Do do this you can use the
Session.session property. For example returning the session as JSON data:

Listing 1.1: save-session.py

>>> keep_session = aos.session
>>> json.dump(keep_session, open('keep_session.json', 'w+'), indent=2)

And then in a different program, you can use this session data to restore a connection:

Listing 1.2: restore-session.py

>>> aos = Session()
>>> had_session = json.load(open('keep_session.json'))
>>> aos.session = had_session

And now the session is again active. If the session could not be restored for any reason, then an exceptions will be
raised. See the Session.session.login() for details on those exceptions.

Session.api.requests

The Session instance maintains properties that allows you direct Requests level access, should you need it for any
reason. For example, you may want access to API capabilities not presently exposed by the aos-pyez library. You can
use the Session.api and Session.api.requests values. The api.url maintains the top level HTTP URL
to the AOS-Server:

1.3. Client Session 5

http://docs.python-requests.org/en/latest/

AOS PyEZ, Release 0.6.0

>>> aos.api.url
'http://aos-server:8888/api'

And the api.requests is a Requests Session object used for direct access. Here is an example of directly invoking
a GET on API version build information:

>>> aos.api.requests.get("%s/versions/build" % aos.api.url)
<Response [200]>

And the data returned by using the api.requests is the same Requests Response object:

>>> got = aos.api.requests.get("%s/versions/build" % aos.api.url)
>>> got.json()
{u'version': u'1.1.0-11', u'build_datetime': u'2016-12-12_16:46:51_PST'}

The Session.api.requests property stores the necessary headers from the login authentication. This means
that you do not need to explicitly provide the headers= value on the requests call. For example, doing a GET on the
IP Pools would require an authentication token. Here is how you could directly invoke the requests library to do the
same data retrieval as shown before, in this case getting the raw JSON output.

1 # each collection has a url property as well!
2 >>> aos.IpPools.url
3 'http://aos-server:8888/api/resources/ip-pools'
4

5 >>> got = aos.api.requests.get(aos.IpPools.url)
6 >>> print json.dumps(got.json(), indent=2)
7 {
8 "items": [
9 {

10 "status": "in_use",
11 "subnets": [
12 {
13 "status": "pool_element_in_use",
14 "network": "172.20.0.0/16"
15 }
16],
17 "display_name": "Switches-IpAddrs",
18 "tags": [],
19 "created_at": "2017-01-28T19:57:12.887618Z",
20 "last_modified_at": "2017-01-28T19:57:12.887618Z",
21 "id": "65dfbc77-1c77-4a99-98a6-e36c5aa7e4d0"
22 },
23 {
24 "status": "in_use",
25 "subnets": [
26 {
27 "status": "pool_element_in_use",
28 "network": "172.21.0.0/16"
29 }
30],
31 "display_name": "Servers-IpAddrs",
32 "tags": [],
33 "created_at": "2017-01-28T19:57:13.096657Z",
34 "last_modified_at": "2017-01-28T19:57:13.096657Z",
35 "id": "0310d821-d075-4075-bdda-55cc6df57258"
36 }
37]
38 }

6 Chapter 1. Guide

http://docs.python-requests.org/en/latest/user/advanced/#session-objects

AOS PyEZ, Release 0.6.0

Devices

You can see all devices under AOS management from the Devices UI:

For this version of aos-pyez you are able to manage devices as a collection, as described in the Collections guide
pages. You can access the devices by using the Devices property of the

Session:

>>> aos.Devices

You can select a specific device from the collection by using the device-key as shown in the UI. The device-key is
generally the serial-number of the device.

If you are using the python interactive interpreter, you can see a list of all known device-keys, for example:

>>> aos.Devices
{

"url": "systems",
"by_id": "id",
"item-names": [

"08002737C2C1",
"080027A71AE6",
"0800277025C8",
"080027AC6320",
"08002763CBDC"

],

1.4. Devices 7

AOS PyEZ, Release 0.6.0

"by_label": "device_key"
}

And in the above, you can see that the label used to index the collection is the device_key collection item
property.

Available Device Information

AOS collects information about each device under management. Some of this information is speciifc to AOS, for
example the version of the AOS device agent. Some of this information is specific to the device, such as serial-
number, hardware-model, vendor, OS version, etc. If you are using the python interactive interpreter, you can see all
available information, for example:

>>> dev = aos.Devices['08002737C2C1']
>>> dev
{

"name": "08002737C2C1",
"value": {

"device_key": "08002737C2C1",
"facts": {

"hw_version": "",
"mgmt_ifname": "eth0",
"mgmt_macaddr": "08:00:27:37:c2:c1",
"os_version_info": {

"major": "3",
"build": "1",
"minor": "1"

},
"aos_hcl_model": "Cumulus_VX",
"serial_number": "08002737C2C1",
"os_arch": "x86_64",
"vendor": "Cumulus",
"os_version": "3.1.1",
"os_family": "Cumulus",
"hw_model": "VX",
"aos_server": "192.168.59.250",
"aos_version": "AOS_1.1.0_OB.11",
"mgmt_ipaddr": "192.168.60.16"

},
"status": {

"hostname": "leaf-3",
"blueprint_id": "30cd9032-35f2-4532-8543-dc24fc8ec7cd",
"blueprint_active": true,
"error_message": "",
"device_start_time": "2017-02-09T21:52:58.606303Z",
"domain_name": "",
"pool_id": "default_pool",
"fqdn": "leaf-3",
"comm_state": "on",
"agent_start_time": "2017-02-09T21:53:14.000000Z",
"state": "IS-ACTIVE",
"is_acknowledged": true

},
"id": "MDgwMDI3MzdDMkMx",
"user_config": {

"aos_hcl_model": "Cumulus_VX",

8 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

"admin_state": "normal",
"location": "leaf-3@demo-vpod-l3 is node leaf_3"

}
},
"id": "MDgwMDI3MzdDMkMx"

}

You can also access the value property directly, for example:

>>> print "S/N: {}".format(dev.value['facts']['serial_number'])
S/N: 08002737C2C1

Device Item Properties

The aos-pyez library provides the following device item properties as a convenience:

• state - provides the status/state value

• is_approved - True if the device is approved for use, False otherwise

• user_config - provide acess to the user_config dictionary

Approving Devices for Use

When a device initially registers with the AOS-Server (via the AOS device agent), the AOS-Server will place it into a
Quarantined state. You are then required to approve it for use. Alternatively the you can pre-provision the AOS-Server
with information so that a device will be recognized upon initial registration, skipping the approval step.

You can approve a given device via the aos-pyez library using the device instannce approve() method. This method
takes an optional location parameter - this is an arbitrary string value you can use to identify where this device is
located in the network, e.g. “rack-12, rack-unit-19”. For more details on this API refer to Devices. Example:

>>> dev = aos.Devices['080027F0E48A']
>>> dev.is_approved
False
>>> dev.approve(location='rack-12, ru=2')
True
>>> dev.is_approved
True

After a device is approved, you can see the results on the AOS-Server UI, for example:

1.4. Devices 9

AOS PyEZ, Release 0.6.0

Collections

A Collection is a way to manage a group of similar items. The Collection base-class is used by many of the other
modules within the aos-pyez library. In general, you can use a Collection to do the following:

• Get a list of known names in the collection

• Determine if an item exists in the collection

• Manage a specific item by the user defined item name (aka “label”)

• Manage a specific item by the AOS unique id value (aka “uid”)

• Iterate through each item in the collection

Collection Properties

The following properties are commonly used:

• names - provides a list of names known to the AOS-Server

• LABEL - the collection item property that identifies the User name for the item

• UNIQUE_ID - the collection item property that idetnifies the AOS-Server UID value

Accessing A Collection

You can access a collection of items via the Session instance. You can see a list of available collections from the as
described in the Client Session guide page. For example, accessing the collection of IP Pools, you would access the
IpPools session property:

>>> ip_pools = aos.IpPools

List of Known Items in a Collection

Each collection maintains a digest of information from the AOS-Server. This information is demand loaded when
you access the collection. The digest contains the list of known User names (“labels”) as well as some information
about each of the items. The specific information that is collected and known is dependent on the collection. Refer to
documentation on each of the collections for more details. To see a list of known collection labels, you can access the
collection names property. For example, the AOS-server presently knows about the following IP Pools:

>>> aos.IpPools.names
[u'Switches-IpAddrs', u'Servers-IpAddrs']

Accessing a Collection Item

You can access a specific collection item in one of a few ways. The first way is by indexing the collection by the label
name. For example, accessing the IP Pool named “Switches-IpAddrs”:

>>> this_pool = aos.IpPools["Switches-IpAddrs"]
>>> this_pool.exists
True
>>> this_pool.id
u'65dfbc77-1c77-4a99-98a6-e36c5aa7e4d0'

10 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

If you attempt to access a collection item that does not exist using this method, you will still get an instance of a
collection item, but this item does not yet exist in the AOS-Server. For example:

>>> new_pool = aos.IpPools['my_new_pool']
>>> new_pool.exists
False
>>> new_pool.id
>>> # None

Generally the above approach is used when you want to create a new instance of a collection item. The topic of adding
and removing collection items is covered in a following section.

Finding an Item in a Collection

Another way to access, or attempt to access, a collection item is using the collections find() method. This will
either return an item that exists, or None. The find() method allows you on of two approaches; either find an item
by its name or unqiue-id. For example:

>>> this_pool = aos.IpPools.find(label=u'Switches-IpAddrs')
>>> this_pool.id
>>> this_pool.id
u'65dfbc77-1c77-4a99-98a6-e36c5aa7e4d0'

Let’s say that all you have is the UID value, perhaps from another API call, and you need to find the IP Pool for that
UID. You can find it by using the uid argument, for example:

>>> pool = aos.IpPools.find(uid="65dfbc77-1c77-4a99-98a6-e36c5aa7e4d0")
>>> pool.exists
True
>>> pool.name
u'Switches-IpAddrs'

If you attempt to find an item that does not exist, by either label or uid, the find() method will return None.

>>> pool = aos.IpPools.find(uid="does not exist")
>>> pool is None
True

Checking for Item in Collection

If you simply want to determine if an item exists in the collection, i.e. known to the AOS-Server, you can use the in
operator. For example, let’s say you want to see if the IP Pool called “MyPool” is known to the AOS-Server:

>>> "MyPool" in aos.IpPools
False

This means that the AOS-Server does not manage this item.

Warning: The collection will only report on items that are known to the AOS-Server. So if you are in the process
of creating a new collection item, but have not yet saved it to the AOS-Server, then the collection will still report
that the item is not in the collection.

1.5. Collections 11

AOS PyEZ, Release 0.6.0

Iterating through Collection Items

If you need to loop through each item in a collection, you can do this using any pythonic iteration mechanism because
the Collection base-class implements the iteration protocol. So you can do things like this:

>>> for pool in aos.IpPools:
... print pool.name, pool.id
...
Switches-IpAddrs 65dfbc77-1c77-4a99-98a6-e36c5aa7e4d0
Servers-IpAddrs 0310d821-d075-4075-bdda-55cc6df57258

Adding and Removing Collection Items

The Collection base-class supports the __iadd__() and __isub__() operators. This is one way you can add and
remove items. Other methods are described in the Collection-Item guide document.

Updating Collection Digest

If you need to update the aos-pyez collection data from the AOS-Server, for example, you’re anticipating a change
to the AOS-Server outside your program, then you can invoke the collection digest() method. This method will
query the AOS-Server for what it knows, and rebuild the internal collection cache.

Pretty-Printing

Each collection implements the __str__() operator so you can pretty-print information about the collection. This is
useful for interatice python sessions or general debugging. For example, here is the output for the IP Pools collection:

1 >>> aos.IpPools
2 {
3 "url": "resources/ip-pools",
4 "by_id": "id",
5 "item-names": [
6 "Switches-IpAddrs",
7 "Servers-IpAddrs"
8],
9 "by_label": "display_name"

10 }

Breaking down the above information:

• line 3: this is the URL in the AOS-Server API to access this collection

• line 4: the id is the actual property name within the collection item to provide the UID value

• lines 5-8: the list of known names managed by the AOS-Server

• line 9: the display_name is the actual property name within the collection item to provide the label value

Accessing the AOS-Server API Directly

The following properties are used if you need to access the AOS-Server API directly.

• url - This is the AOS-Server specific URL for this collection

12 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

• api - This is the Session instance so you can access the AOS-Server API

For example, here is the way you could directly perform a GET on the IP Pools collection:

>>> aos.IpPools.url
'http://aos-server:8888/api/resources/ip-pools'

>>> got = aos.IpPools.api.requests.get(aos.IpPools.url)
>>> got
<Response [200]>

Note: You do not need to provide the Requests header value to the requests.get call because the aos-pyez
Session api instance has these values already stored within the session instance.

Collection Items

You can manage individual collection items in generally the same way. This guide page provides general usage
information. Specific aos-pyez collections may have additional information that you can review as well. For more
information about aos-pyez collections: Collections.

Item Properties

The following are commonly used collection item properties:

• name - This is the User provided name of the item, aka “label”

• id - This is the AOS-Server generated unique-ID value, aka “uid”

• value - This is a dict of data specific to the collection item that stores the raw data about this item.

• collection - This is the parent collection instance for this item.

Create an Item

You can create a new item in one of two ways. The first way is to access a collection using the new item name and then
issuing a write() on the item. The write() will detect that this item does not currently exist in the AOS-Server
and make the proper API call to create it. There is an explicit create() method that you could call in this particular
use-case, but it is there for your programming convenience only.

For example, let’s create a new IP Pool called “pod-1-switch-loopbacks”. The first step is to index the IP Pools
collection:

>>> new_pool = aos.IpPools['pod-1-switch-loopbacks']
>>> new_pool.exists
False

The next step is to provide the necessary item value data for this item. The structure / contents of the item data is going
to be specific to each type of item. For specific item details, you will need to refer to the AOS-Server API Reference
documentation available directly from the UI page.

You cannot write directly to the item value property, but you can provide the contents when you do the write()
invocation:

1.6. Collection Items 13

AOS PyEZ, Release 0.6.0

setup a dict of data required for the ip-pool item:
>>> pool_data = dict(subnets=[dict(network='192.168.10.0/24')])

write the data, which will trigger a create
>>> new_pool.write(pool_data)

Upon success, the new pool now exists, and has been assigned a unique ID by AOS-Server. This information is updated
within collection and item instance for your immediate use:

>>> new_pool.exists
True
>>> new_pool.id
u'45de5b41-1846-4057-afe8-9f5b93f8c5a6'

If for any reason the write() fails, an exception will be raised. So you should generally wrap a try/except around
any operation you are doing with the aos-pyez library. For exception details, please refer to the reference section: API
Reference.

Write an Item

If you need to create or update an existing collection item, you can do so using the write() method. If the item does
not exist in the AOS-Server, then this method will perform the necessary POST command to create it. Otherwise, the
write() method will issue a PUT command to update-overwrite.

Read an Item

Generally speaking, when you access a collection item, the item value is already present. If you need for any reason
to retrieve the current value from the AOS-Server, you can invoke the read() method. This will refresh the instance
value.

Delete an Item

You can delete an item in one of two ways - either calling the delete() method on the instance or using the python
del operation on the item value property.

#
delete item using the method
#
>>> new_pool.delete()
#
equivalent to using the del operator
#
>>> del new_pool.value

Backup / Restore Local JSON File

You may find it useful to make a copy of a collection item and store it as a JSON file on your local filesystem. You
can then later restore this value from your local filesystem. Each collection item provides a jsonfile_save() and
jsonfile_load() for backup and restore. By default, the jsonfile_save() will store the JSON file in your
local current working directory using the name property as the filename. You can override this default behavior with
the various arguments to the jsonfile_save() method.

14 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

>>> # assume new_pool was created with name='pod-1-switch-loopbacks'

>>> new_pool.jsonfile_save() # saves to 'pod-1-
→˓switch-loopbacks.json' in $CWD
>>> new_pool.jsonfile_save(dirpath='/tmp') # /tmp/pod-1-switch-
→˓loopbacks.json
>>> new_pool.jsonfile_save(dirpath='/tmp', filename='save-me') # /tmp/save-me.json

The jsonfile_load() method always requires a specific filepath:

>>> new_pool.jsonfile_load('/tmp/pod-1-switch-loopbacks.json')

Note: The jsonfile_load() method only loads the contents of the file into the instance object. If you are using
this method to create a new item in the AOS-Server, you will then need to issue the write() method

Accessing the AOS-Server API Directly

In some cases you might want to access the AOS-Server API directly. The following properties are available should
you need to do so:

• url - This is the AOS-Server specific URL for this item

• api - This is the Session instance so you can access the AOS-Server API

For example, let’s say you want to issue a DELETE command directly:

>>> aos.IpPools.names
[u'Switches-IpAddrs', u'Servers-IpAddrs', u'my_pool']
>>>
>>> pool = aos.IpPools['my_pool']
>>>
>>> pool.url
u'http://aos-server:8888/api/resources/ip-pools/a91d088f-ee0e-4bfc-803f-9078954d5826'
>>>
>>> pool.api.requests.delete(pool.url)
<Response [202]>

Resources

This version of the aos-pyez supports all AOS 1.1 managed Resources. Resources are collections of data items that
you use with AOS Blueprints for the purpose assigning values for network services.

• IP Pools

• ASN Pools

• External Routers

IP Pools

When you need to assign IP addresses to an AOS Blueprint you can use IP Pools to instruct AOS to allocate and assign
addresses from these pool rather than explicitly assigning specific individual values.

1.7. Resources 15

AOS PyEZ, Release 0.6.0

You can use AOS IP Pools in conjunction with your existing IP Address Management (IPAM) system. An IPAM
system allows you to allocate blocks of IP address ranges. If you use an IPAM system you know that you are still
responsible for manually assigning specific IP addresses from those ranges when you create your network services.
When you use AOS, you can create an AOS IP Pool with the IPAM range information, and then assign the IP Pool to
an AOS Blueprint. By following this approach you let AOS do the specific IP allocation task.

You can access the IP Pools resources via the aos-pyez library by using the IpPools property of the Session:

>>> aos.IpPools

The IpPools is managed as a Collection/Items, as described in the Collections guide documents. In addition to the
Items properties documented there, the an IpPool item also supports:

• in_use - True if the pool is used by an AOS Blueprint, False otherwise.

ASN Pools

When you need to assign Autonomous System Numbers (ASNs) to an AOS Blueprint you can use ASN Pools to
instruct AOS to allocate and assign values from these pool rather than explicitly assigning specific individual values.

You can use AOS ASN Pools in conjunction with your existing IP Address Managementq (IPAM) system, presuming
it also supports ASN block management. Even though an IPAM system allows you to allocate ASN blocks, you are
still responsible for manually assigning specific values to devices when you create your network services. When you
use AOS, you can create an AOS ASN Pool with the block range information from your IPAM. You then assign that
ASN Pool into your Blueprint. By following this approach you let AOS do the specific ASN value assignment task.

You can access the ASN Pools resources via the aos-pyez library by using the AsnPools property of the Session:

>>> aos.AsnPools

The AsnPools is managed as a Collection/Items, as described in the Collections guide documents. In addition to the
Items properties documented there, the an IpPool item also supports:

• in_use - True if the pool is used by an AOS Blueprint, False otherwise.

External Routers

AOS Blueprints need information about external routers. For example, when using AOS to manage a L3 Clos , the
Blueprint needs external router information to configure the attached switches and have the necessary information to
gather the appropriate telemetry associated with the BGP session(s).

You can access the External Routers resource via the aos-pyez library using the ExternalRouters property of the
Session:

>>> aos.ExternalRouters

The ExternalRouters is managed as a Collection/Items, as described in the Collections guide documents.

Design Elements

Design elements are used when creating network service designs, called Templates. These templates are then used as
a basis for specific instances of managed network services called Blueprints. For details on managing Blueprints, refer
to the guide document Blueprints. This guide page is meant to provide information on using the AOS design elements

16 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

via the aos-pyez library. For complete documentation on these topics please refer to the AOS product documentation
available via the support portal.

This version of the aos-pyez supports all AOS 1.1 managed design elements:

• Design Templates

• Logical Devices

• Logical Device Maps

• Rack Types

For this version of aos-pyez you are able to manage design elements as a collection, as described in the Collections
guide pages. As a practical matter, you would use the AOS-Server UI to create these elements. You can then use the
aos-pyez library to use the Template designs as part of building a Blueprint. Alternatively you could use the aos-pyez
library to load the item contents from saved JSON files and create them in the AOS-Server.

Design Templates

When you create a design template you are instructing AOS on how to compose a network service in a vendor agnostic
manner - meaning the design itself does not include any network vendor hardware or network operating system specific
requirements. You assign those details later when you build out a Blueprint based on the design template.

For example, a design Template may describe a two stage L3 Clos data center fabric that uses 32x40 GE spine-switches
. The design itself is vendor agnostic as it constrains the design to specific device property (32x40GE) but not to a
specific network equipment vendor or network operating system (NOS). When you create a Blueprint from a Template,
you can then assign into that Blueprint any specific vendor that provides for such a switch. You create these design /
build relationships using the other design elements such as Logical Devices, Logical Device Maps, and Rack Types.

You can access the design Templates via the aos-pyez library by using the DesignTemplates property of the
Session:

>>> aos.DesignTemplates

Logical Devices

You use a Logical Device as a design element for a Design Templates or Rack Types. You use Logical Devices to
define the device properties that will then be used as part of a design. A logical device design construct is vendor
agnostic, meaning that the properties defined are not speciifc to any one network equipment vendor or NOS.

Broadly speaking, these properties include the following:

1.8. Design Elements 17

https://support.apstra.com/support/login

AOS PyEZ, Release 0.6.0

• Number of ports - ports can also be arranged into groups

• Speed of ports - 10GE, 40GE, 100GE

• Role of ports - connects leaf to spine, connect to external-router, to-attached server, etc.

A typical example of a logical device is a a leaf switch with 48x10GE + 6x40GE ports. The 48x10GE could be
designated to connect to either servers or external-routers (for the case of 10GE router connections). The 6x40GE
ports would be designated as connecting leaf to spine, i.e. L3 Clos fabric ports.

You can access the Logical Devices via the aos-pyez library by using the LogicalDevices property of the Session:

>>> aos.LogicalDevices

Logical Device Maps

You use a Logical Device Map to create the relationship between a Logical Device (vendor agnostic) and a specific
network vendor equipment running a specific NOS. You then use logical device maps when building a Blueprint to
identify the specific network equipment to use.

For example, you might have a design that requires a 32x40GE spine, as defined by a logical device. You would then
need to create a logical device map for the specific equipment you plan to use. If you want to use a Dell S-6000 switch
running Cumulus Linux, you would create a specific logical device map for that purpose. Likewise, if you wanted to
use a Cisco 9332 running NX-OS you would create another logical device for that purpose. Once you have logical
device maps created, you can then use these to associate specific vendor equipment into a Blueprint.

18 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

You can access the Logical Device Maps via the aos-pyez library by using the LogicalDeviceMaps property of
the Session:

>>> aos.LogicalDeviceMaps

Rack Types

You use Rack Types as an element of a design Template. You can compose the structure of rack that includes the
following properties:

• Number of leaf-switches per rack

• Logical Device type of leaf-switches

• Number of links between leaf-switches within the rack (for redundancy)

• Number of links between leaf-switches and spine-switches

• Number of servers within the rack

• Logical Device type of servers (modeling the number NICs)

• The manner in which the server NICs are connected between rack leaf-switches

You can access the Logical Device Maps via the aos-pyez library by using the RackTypes property of the Session:

>>> aos.RackTypes

Blueprints

A Blueprint is a specific instance of an engineering Design Template that you build, deploy, and operate within your
network. A typical use-case is the following:

1. create a blueprint from a given design template

2. build out the blueprint with specific parameter values

3. assign specific devices to the blueprint

4. deploy the blueprint onto the devices

5. obtain operational values about the blueprint

1.9. Blueprints 19

AOS PyEZ, Release 0.6.0

This version of the aos-pyez library focuses the “build” aspects; meaning you can use the library to create a Blueprint
from a design Template and provision the Blueprint parameters. Future versions of the aos-pyez library will expose
the complete set of functionality. You can access all of the Blueprint functionality using the method described in the
section Session.api.requests.

You can access the Blueprints via the aos-pyez library by using the Blueprints property of the Session:

>>> aos.Blueprints

Supported Features

Create a Blueprint from a Design Template

Let’s create a Blueprint from a design Template called “My-Demo-Design”. We can verify that you’ve created this
template using the DesignTemplates Session property:

>>> aos.DesignTemplates
{

"url": "design/templates",
"by_id": "id",
"item-names": [

"My-Demo-Design",
"vPOD-L3"

],
"by_label": "display_name"

}

To create a Blueprint, you must have the design Template id value, along with the name of the design reference
architecture. For this example, the reference architecture is called two_stage_l3clos:

>>> template = aos.DesignTemplates['My-Demo-Design']
>>> template.id
u'ee0164ed-d9cf-46c8-a5e5-8b16d70d0a1c'

Let’s create a Blueprint called “My-Pod-A” from this design. The first step is to create a blueprint item using the
collection:

>>> blueprint = aos.Blueprints['My-POD-A']
>>> blueprint.exists
False

We can see that AOS-Server does not yet know about this Bluerpint because the exists property is False. The
next step is to perform the create action:

>>> blueprint.create(template.id, reference_arch='two_stage_l3clos')
True
>>> blueprint.exists
True
>>> blueprint.id
u'a58e8c3f-84c5-472c-aaf8-a2292f4aa2c6'

At this point the blueprint exists in the AOS-Server, and you can verify that via the UI, for example:

20 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

Get / Set Blueprint Parameters

Once you have created a Blueprint, you will need to assign values that are specific to this service. These values include,
for example, the IP addresses, VLANs, ASNs, specific device-models to use, and ultimately specific devices. You will
need to provide all blueprint values before you can actually deploy the blueprint to the devices. This section describes
the generalized process to get and set blueprint parameters. If you are specifically looking to manage the blueprint
links, see Cabling.

You can assign blueprint values using the designated slots defined by the design Template. You can get a list of the
known slots using the params.names list. For example:

>>> print json.dumps(blueprint.params.names, indent=2)
[

"external_router_interfaces",
"leaf_loopback_ips",
"spine_leaf_link_ips",
"to_external_router_link_ips",
"leaf_asns",
"node_leaf_1_interfaces",
"hcls",
"devices",
"node_spine_1_interfaces",
"spine_loopback_ips",
"deploy",
"spine_asns",
"dhcp_server_ip",
"logical_device_maps",
"resource_pools",
"node_leaf_3_interfaces",
"node_leaf_2_interfaces",
"hostnames",
"external_links",
"node_spine_2_interfaces",
"port_maps"

]

1.9. Blueprints 21

AOS PyEZ, Release 0.6.0

You can inspect the purpose and current value of a blueprint parameter by accessing it as a collection item. For
example, let’s look at a commonly used slot called resource_pools. This parameter is where you would assign the
specific IP-Pools and ASN-Pools for this blueprint.

>>> param = blueprint.params['resource_pools']
>>> param
{

"Blueprint Name": "My-POD-A",
"Blueprint ID": "a58e8c3f-84c5-472c-aaf8-a2292f4aa2c6",
"Parameter Name": "resource_pools",
"Parameter Value": {},
"Parameter Info": {

"slot_type": "POOL_LIST",
"name": "resource_pools",
"ids": [

"leaf_loopback_ips",
"spine_leaf_link_ips",
"to_external_router_link_ips",
"leaf_asns",
"spine_loopback_ips",
"spine_asns",
"virtual_network_svi_subnets"

]
}

}

The resource_pool is one of the more complicated, but most often used, values. So it’s worthwhile to explore this
one in detail here. You can see from the “Parameter Info” description that the resource_pools slot has a number of
sub-parameters, leaf_asns for example. This means that if you want to assign the ASN-Pool for the leaf switches, you
would store that value there. Looking at the “Parameter Value” area, you can see that no values are actually assigned
to the resource_pools slot. So let’s assign the ASN pool called “Private-ASN-pool”:

>>> aos.AsnPools['Private-ASN-pool'].id
u'b4fdb577-531b-40ba-96a8-9a015794b30c'

From the “slot_type” information we can see the value must actually be a list. So in order to update one specific slot
in the resource_pools you would need to do something like this:

>>> param.update({'leaf_asns': [aos.AsnPools['Private-ASN-pool'].id]})

You can see update() takes a value to merge into the slot, and that value is a dictionary keyed by the slot ids . In
this case we are only updating a single key, leaf_asns. The value for this key must be a list of ASN-Pool IDs. In this
case, we are only assigning a single pool, so a list of one element. Once this action is completed, you can verify this
by examining the param value property:

>>> param.value
{u'leaf_asns': [u'b4fdb577-531b-40ba-96a8-9a015794b30c']}

You can also see this update on the AOS-Server UI, for example:

22 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

Let’s look at one more example, this one much less complex. This blueprint has a DHCP relay service component,
and one of the blueprint parameters is to provide the DHCP server IP address. The slot name here is:

>>> blueprint.params['dhcp_server_ip']
{

"Blueprint Name": "My-POD-A",
"Blueprint ID": "a58e8c3f-84c5-472c-aaf8-a2292f4aa2c6",
"Parameter Name": "dhcp_server_ip",
"Parameter Value": {},
"Parameter Info": {

"slot_type": "IP",
"name": "dhcp_server_ip",
"ids": [

"value"
]

}
}

So in order to assign this value, we would need to perform a parameter update, the key is value and we need to provide
the IP address. We could do this update in a simple line, for example:

>>> blueprint.params['dhcp_server_ip'].update({'value': "192.168.59.254"})

And reading this back, we can see the update is completed as reflected in the “Parameter Value”:

>>> blueprint.params['dhcp_server_ip']
{

"Blueprint Name": "My-POD-A",
"Blueprint ID": "a58e8c3f-84c5-472c-aaf8-a2292f4aa2c6",

1.9. Blueprints 23

AOS PyEZ, Release 0.6.0

"Parameter Name": "dhcp_server_ip",
"Parameter Value": {

"value": "192.168.59.254"
},
"Parameter Info": {

"slot_type": "IP",
"name": "dhcp_server_ip",
"ids": [

"value"
]

}
}

or more simply by examining just the value property:

>>> blueprint.params['dhcp_server_ip'].value
{u'value': u'192.168.59.254'}

For more details on using the aos-pyez API with Blueprints, see Blueprints.

Get / Set Blueprint Cabling

New in version 0.7.0.

You may want to manage the Blueprint cabling. Blueprint instances now support a cabling property that provides
an easy way to retrieve and and reconfigure the cabling parameters. This cabling property builds upon the general
methodology presented in the Blueprint Parameters.

Current documentation is provided in the Blueprint Cabling API section.

Retrieve Blueprint Build Status

You can check to see if the blueprint has any missing build values by examinging the build_errors property. This
property is a list of current missing build issues, or None if there are no build issues. Here is a short listing of the
system related issues for a new blueprint, for example:

>>> print json.dumps(blueprint.build_errors['system']['nodes'], indent=2)
{

"leaf_3": {
"hcl_id": "Value should be set",
"port_map": "Value should be set",
"loopback_ip": "Value should be set"

},
"leaf_2": {
"hcl_id": "Value should be set",
"port_map": "Value should be set",
"loopback_ip": "Value should be set"

},
"leaf_1": {
"hcl_id": "Value should be set",
"loopback_ip": "Value should be set",
"port_map": "Value should be set"

},
"spine_2": {
"hcl_id": "Value should be set",
"loopback_ip": "Value should be set",

24 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

"port_map": "Value should be set",
"asn": "Value should be set"

},
"spine_1": {
"hcl_id": "Value should be set",
"loopback_ip": "Value should be set",
"port_map": "Value should be set",
"asn": "Value should be set"

}
}

Retrieve Blueprint Rendered Contents

You can retrieve the contents of the Blueprint build composition at any time using the contents property. This
property will give you a very large dictionary of data organized in a way that is specific to the design Template. The
following is a short snippet of content values for the “links” area:

each time you access the contents property the library will do a new GET.
so make a variable so we only do a single GET for this example.

>>> contents = blueprint.contents

examine a list of all the items in the contents

>>> print json.dumps(contents.keys(), indent=2)
[

"display_name",
"reference_architecture",
"service",
"created_at",
"custom_extension",
"system",
"last_modified_at",
"intent",
"tenant_connectivity",
"external_endpoints",
"id",
"constraints"

]

access the system links contents. There are 23 links in this Blueprint

>>> links = contents['system']['links']
>>> len(links)
23

now show the contents of one of the links

>>> print json.dumps(links[0], indent=2)
{

"role": "leaf_l3_server",
"endpoints": [
{

"interface": "eth0",
"display_name": "server_4_leaf_2",
"type": "l3_server",

1.9. Blueprints 25

AOS PyEZ, Release 0.6.0

"id": "server_4_leaf_2",
"ip": "172.21.0.17/31"

},
{

"interface": "swp4",
"display_name": "leaf_2",
"type": "leaf",
"id": "leaf_2",
"ip": "172.21.0.16/31"

}
],
"display_name": "leaf_2<->server_4_leaf_2"

}

Retrieve Device Rendered Configurations

Once you’ve completed the build out of the Blueprint parameters, you can retrieve the actual equipment vendor specific
configuration that AOS will deploy onto the device. The structure and format of the device configuration will be
specific to the equipment+NOS. The following example is part of the configuration for an Arista EOS device. In this
example, the “spine_1” device happens to be an Arista. The aos-pyez library does not a convenient method to retrieve
the configuration, so we need to use the Session.api.requests technique. The AOS-Server API reference page for the
required request is:

And the code example to invoke this API for the “spine_1” node:

>>> got = blueprint.api.requests.get("%s/nodes/spine_1/config-rendering" % blueprint.
→˓url)
>>> body = got.json()
>>> body.keys()
[u'config']
>>>
>>> print body['config']
service interface inactive expose
!
hostname spine-1
interface Ethernet1

26 Chapter 1. Guide

AOS PyEZ, Release 0.6.0

description facing_router-A:
no switchport
ip address 1.1.1.0/31
no shutdown
exit

!
interface Ethernet2

description facing_leaf_1:swp6
no switchport
ip address 172.20.0.0/31
no shutdown
exit

!
... clipped ...

More Features Soon!

Much of the Blueprint functionality from a deploy and operate phase is not currently exposed via the aos-pyez. Stay
tuned for more enhancements in the coming releases. If you have any particular interests, please open a github issue.
In the meantime, you can use the Session.api.requests technique illustrated above. You can find all of the AOS-Server
API information directly from the UI:

1.9. Blueprints 27

AOS PyEZ, Release 0.6.0

28 Chapter 1. Guide

CHAPTER 2

API Reference

Session

class apstra.aosom.session.Session(target=None, **kwargs)
The Session class is used to create a client connection with the AOS-server. The general process to create a
connection is as follows:

from apstra.aosom.session import Session

aos = Session('aos-session') # hostname or ip-addr of AOS-server
aos.login() # username/password uses defaults

This module will use your environment variables to provide the default login values, if they are set. Refer to
ENV for specific values.

This module will use value defaults as defined in DEFAULTS.

Once you have an active session with the AOS-server you use the modules defined in the ModuleCatalog.

The following are the available public attributes of a Session instance:

• api - an instance of the Session.Api that provides HTTP access capabilities.

• server - the provided AOS-server hostname/ip-addr value.

• user - the provided AOS login user-name

The following are the available user-shell environment variables that are used by the Session instance:

• AOS_SERVER - the AOS-server hostname/ip-addr

• AOS_USER - the login user-name, defaults to DEFAULTS["USER"].

• AOS_PASSWD - the login user-password, defaults to DEFAULTS["PASSWD"].

• AOS_SESSION_TOKEN - a pre-existing API session-token to avoid user login/authentication.

ENV = {‘USER’: ‘AOS_USER’, ‘PASSWD’: ‘AOS_PASSWD’, ‘TOKEN’: ‘AOS_SESSION_TOKEN’, ‘PORT’: ‘AOS_SERVER_PORT’, ‘SERVER’: ‘AOS_SERVER’}

29

AOS PyEZ, Release 0.6.0

DEFAULTS = {‘PASSWD’: ‘admin’, ‘USER’: ‘admin’, ‘PORT’: 443}

__init__(target=None, **kwargs)
Create a Session instance that will connect to an AOS-server, server. Additional keyword arguments
can be provided that override the default values, as defined in DEFAULTS, or the values that are taken
from the callers shell environment, as defined in ENV . Once a Session instance has been created, the caller
can complete the login process by invoking login().

Parameters

• target (str) – URL to the AOS-Server. The target value must be in the form of
<scheme>://<aos-server>[:port]. For example:

https://aos-server http://aos-server http://aos-server:8888

• user (str) – User login name

• passwd (str) – User login password

login()
Login to the AOS-server, obtaining a session token for use with later calls to the API.

Raises

• LoginAuthError – The provided user credentials are not valid. Check the
user/password or session token values provided.

• LoginServerUnreachableError – The API is not able to connect to the AOS-
server via the API. This could be due to any number of networking related issues. For
example, the port is blocked by a firewall, or the server value is IP unreachable.

• LoginNoServerError – The instance does not have server configured.

session
When used as a setter attempts to resume an existing session with the AOS-server using the provided
session data. If there is an error, an exception is raised.

Returns The session data that can be used for a future resume.

Return type dict

Raises See the login() for details.

token

Returns Authentication token from existing session.

Return type str

Raises NoLoginError – When no token is present.

url

Returns

• Return the current AOS-server API URL. If this value is

• not set, then an exception is raised. The raise here is important

• because other code depends on this behavior.

Raises NoLoginError: URL does not exist

valid
Returns bool if this session is valid; i.e. we have a valid login/token.

Returns

30 Chapter 2. API Reference

https://aos-server
http://aos-server
http://aos-server:8888

AOS PyEZ, Release 0.6.0

• True if valid

• False if not valid.

Devices

Collection

Collection is the base-class for all collections managed by the AOS-PyEZ framework. Each of the collections
managed within the AOS-PyEZ framework will subclass, and may provide additional functionality or override items
in this base-class.

CollectionItem

CollectionItem is the base-class for all items that are stored within a collection. Each of the collections managed
within the AOS-PyEZ framework will subclass, and may provide additional functionality or override items in this
base-class.

Blueprints

Blueprint Collection

Blueprint Item

Blueprint Parameter Collection

Blueprint Parameter Collection Item

Blueprint Cabling

Node Cablers

The NodeCabler class is a helper to Cabling, refer to Cabling.Nodes.

Link Cablers

The LinkCabler class is a helper to Cabling, refer to Cabling.Links.

2.2. Devices 31

AOS PyEZ, Release 0.6.0

32 Chapter 2. API Reference

CHAPTER 3

Other information

Changelog

0.6.0 (14-Feb-2017)

• migrated to using requests library Session instance with apstra.aosom.Session.api

• unit-test coverage at 100%

• docs updated

• depreciated AOS 1.0 specific code

• bug fixes with some breaking-changes; refer to tagged release notes for details

License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common

33

AOS PyEZ, Release 0.6.0

control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,

34 Chapter 3. Other information

AOS PyEZ, Release 0.6.0

worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of

3.2. License 35

AOS PyEZ, Release 0.6.0

this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright {yyyy} {name of copyright owner}

36 Chapter 3. Other information

AOS PyEZ, Release 0.6.0

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

3.2. License 37

AOS PyEZ, Release 0.6.0

38 Chapter 3. Other information

CHAPTER 4

Indices and Tables

• genindex

• modindex

• search

39

AOS PyEZ, Release 0.6.0

40 Chapter 4. Indices and Tables

Index

Symbols
__init__() (apstra.aosom.session.Session method), 30

D
DEFAULTS (apstra.aosom.session.Session attribute), 29

E
ENV (apstra.aosom.session.Session attribute), 29

L
login() (apstra.aosom.session.Session method), 30

S
session (apstra.aosom.session.Session attribute), 30
Session (class in apstra.aosom.session), 29

T
token (apstra.aosom.session.Session attribute), 30

U
url (apstra.aosom.session.Session attribute), 30

V
valid (apstra.aosom.session.Session attribute), 30

41

	Guide
	API Reference
	Other information
	Indices and Tables

